

Geometry

Instant Lessons

<u>Copyright:</u> These materials are photocopiable but please leave all logos and web addresses on handouts. Please don't post these materials onto the web. Thank you

Lesson Plan: Geometry EXAMPLE

Lessons: Introduction, reading, listening, speaking (seminar) and writing.

Time: 1-1.5 hours + homework task

Level: *****[B1/ B2/C1].

Lesson Aim:

To focus on one key topic and develop a range of key academic skills based on this topic.

Introduction [5 minutes]

- Introduce the topic 'Geometry'.
- Give out the 'Reading Text Worksheet' and discuss the lead in questions.

Reading: Test-Type Questions [20-30 minutes + feedback]

- Students read the text. Check words & meanings with a dictionary.
- Answer the questions.
- Feedback: distribute or project ANSWERS.

Listening: Lecture & Test Questions [30-40 minutes + feedback]

Video: Available in paid download MP3: Available in paid download

- Give out the 'Listening: Mini Lecture Worksheet'.
- Students check key vocabulary.

Option 1

- Students look at the questions.
- Students listen & answer the questions.
- Give <u>2 minutes</u> to tidy answers.
- Students listen again. Check answers & answer missed questions.
- Feedback: distribute or project ANSWERS.

Option 2 (harder)

- Students listen & take notes (Use paper or the PPT slides in the Appendix).
- Students listen again & add to their notes.
- Students use their notes to answer the questions.
- Feedback: distribute or project ANSWERS.

Speaking: Seminar [10-15 minutes]

- Give out the 'Speaking Worksheet'.
- Students revise content from the reading & lecture texts.
- Students hold a seminar discussion using the question prompts.

 How to run a seminar: https://www.academic-englishuk.com/seminars

Writing: Summary [20 minutes + tutor feedback]

- This can be a homework task if limited time.
- Students use the two texts (reading and listening) to write a 150-word paragraph on 'the role and construction'.
- Tutor to error correct & return: https://www.academic-englishuk.com/error-correction

Reading Text Worksheet

Task 1: Lead In

- 1. What are your memories of studying geometry at school?
- 3. Look at the title of the reading text what do you think it is about?

Task 2: Reading Text Geometry: Much more than a theoretical subject

By L. Dawkins (2022)
Geometry is considered to be one of the two oldest fields of mathematics, along with the study of numbers. Its name is derived from the Greek $g\bar{e}$ and $metria$ meaning ' . Perimeters, length, congruence and symmetry are
also explored. Both assumptions and applications of geometry have shifted dramatically since the
There are several types of geometry, Euclidean geometry was founded in 300BC and encompasses the spatial relationships between
by the Greek mathematician Euclid. Since the late 19 th century, several non-Euclidean branches of geometry have
examples include two-dimensional (2D) surface,
analytic geometry, in which coordinates and algebra are employed, differential geometry, whose principal, and hyperbolic geometry, which examines
the parallelism postulate as well as the Euclidean axioms (The Encyclopaedia of Mathematics, 2020).
In modern times, geometry has many uses in . The Society for Industrial and Applied Mathematics
(SIAM, 2017) claims that although "experimental design outlines the best way to conduct drug trials",
algebraic topology can determine those drugs are
meant to treat". Moreover, algebraic geometry is known to play a fundamental role in the design of
self-driving cars. blueprints and simulations of
planned structures, whereas with regard to video games, thanks to isometric graphics and a technique
known as raycasting, gamers are able to view the game from several perspectives, as well as control
how their . Furthermore, geometry is a key part of
"global positioning systems (GPS) which require three coordinates" and space exploration, as it can
help to calculate not only a point and landing on a
planet's surface (Brenner, 2018).
References
Brenner, L., (2018). How Is Geometry Used in Real Life? [online]. Available at: https://sciencing.com/geometry-
<u>used-real-life-8698204.html</u> [Viewed 12.02.2022].
Encyclopaedia of Mathematics, (2020). Geometry [online]. Available at:
https://encyclopediaofmath.org/wiki/Geometry [Viewed 12.02.2022].
Society for Industrial and Applied Mathematics (SIAM), (2017). <i>Using Algebra and Geometry in the Real World</i>
[online]. Available at: https://www.youtube.com/watch?v=s-k9zlGu43A [Viewed 14.02.2022].

Reading Text Questions

Task 3: Headings

Choose a subheading for each paragraph. One title is not needed.

1	Α	Significant branches of geometry
2	В	
3	С	How we are taught geometry in school
	D	***************************************

____/3

Task 4: True, False or Not Given

Decide if these statements are true (T), false (F) or not given (NG). Highlight the answer in the text.

•		T/F/NG
1	Geometry is the oldest field in mathematics.	
2	The	
3	Euclidean geometry was only known as geometry until the 19 th century.	
4	Descriptive geometry	
5	The only difference between hyperbolic and Euclidean geometries is parallelism.	
6	Algebraic	
7	Both CAD and GPS require a form of geometry to function well.	
8	NASA	

___/

Task 5: Vocabulary

Key language – search for the word in the text that means:

Paragraph		Word
1	Having the same shape or size.	
1	000000000000000000000000000000000000000	
2	A flat, horizontal surface.	
2	100000000000000000000000000000000000000	
2	A collection of points forming a certain kind of set.	
3		
3	The curved path of an object travelling in space.	

		_
	•	_
	•	•

Total Score ____/18

Listening: Mini Lecture Worksheet

	t 1: Key Voca	-	. 	-:			
Chec	k these word	s and phrases be	erore lister		VARABARA		
	tension	rigidity compression	load	frame	arch	member	intrinsic
Tool	, 2. Locturo I	listoning					4
	c 2: Lecture I In to the lectu	ire on bridge cor	struction	and answer	the followi	ing questions:	
2.1	Gap Fill	_					
	-	pose of a moder	n bridge. ī	The first lett	er is alread	y given.	
Tod	day's modern	bridges are built	with	xxxxxxxx a	ind a	r	easons in mind,
ma	king them an	iconic s	of	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXX		
2.2	Name ON	E notable Truss	hridge				/2
	Traine Orti		, which				
							/ 1
2.3	Open Ques	stions					<i>.</i>
		stions about the		_	idge structı	ires.	
i.	Which trian	igle is most com	monly use	d?			
ii.	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	200000000000000000000000000000000000000	000000000	<u> </u>			
iii.	Why are sca	alene triangles n	ot usually	used?			
iv.	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	200000000000000000000000000000000000000	000000000	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX			
٧.	What is the	main reason for	using tria	ingles in brid	dges?		
	Multiple Ch	noice estions about Tru	icc hridaec	Salact ON	F answer or	alv ner guestion	/5
i.		the Warren Trus			A. In 1840		1.
			J		В.	XXXXXXXX	
					C. Somet	ime between 1	840 and 1848.
ii.	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	>>>>>>>	00000000	000000000		ession and ten	sion above and
					below.		
					B. Compr	ession above a	nd tension below.
iii.	What were	truss bridges ori	ginally des	signed to	A.	ession above a	nu tension below.
	do?	trass briages or	Smany ac.	Jigirea to		goods over wate	er.
					C.	000000000000000000000000000000000000000	XXXXXXX
iv.	XXXXXXXXXXXX	2000000000000	00000000	XXXXXXXXXX	A. They c	an be combine	d with other
					bridges.		
					B. They a	re cheap to ma	ke.
					C.	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	>>>>>>
2.4	O E'II						/ 4
2.4	Gap Fill	sturor cay about	futuro bri	dao etruetui	ros2 Comple	ato the gans	
		cturer say about		uge structur	es: comple	ete tile gaps.	////// +h.
AIT	iougn moder	n bridges may us a	se more _	part of t	he overall d	lesign and cons	, the truction.
Tota	I Score /1			part or t	oreran a		/ 2

Speaking Worksheet

Discussion

Use the two texts (reading and listening) to discuss these questions:

key sources:	
Reading: Dawkins (2022)	Lecture: Watts (2022)
Brenner (2018) / SIAM (2017)	Johnson (2021) / Blockley (N.D.) / Griggs (2015)
Seminar Questions	
1) Where and when did geometry originate?	
2) geomet	ry?
3) In which areas of everyday life can geometr	y be beneficial?
4) How and	d construction?
5) Summarise your discussion. (Each person summarises one main interesting poi	nt discussed).
Summary Use the two texts (reading and listening) to write a	g Task paragraph on 'the role nd construction'.
Write 150 words:	

Reading ANSWERS

Task 3: Headings

Choose a subheading for each paragraph. One title is not needed.

1	D	Α	Significant branches of geometry
2	Α	В	Areas in which geometry can be applied successfully

___/3

ALL ANSWERS ARE INCLUDED IN PAID VERSION...

Listening ANSWERS

2.1 Gap Fill

Complete the purpose of a modern bridge. The first letter is already given.

Today's modern bridges are built with technical, social, financial and *aesthetic* reasons in mind, making them an iconic *symbol* of engineering.

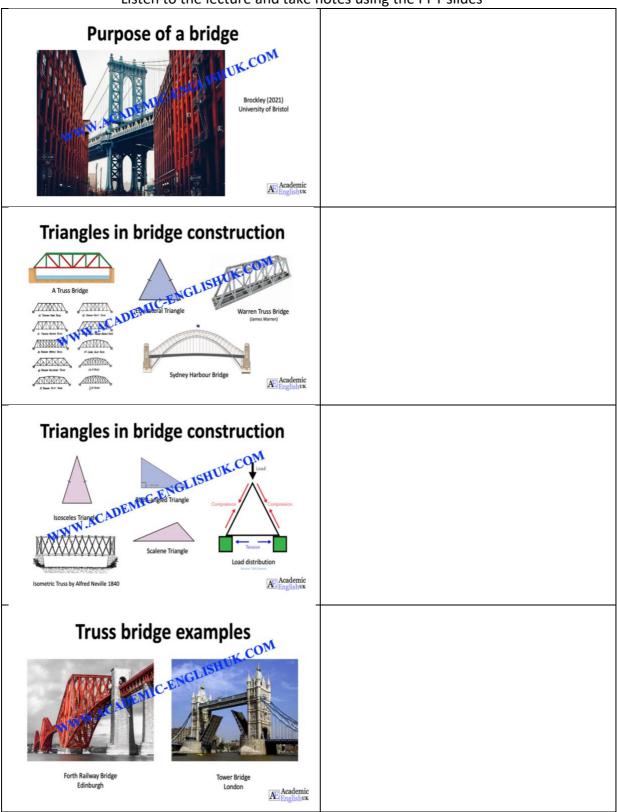
12

ALL ANSWERS ARE INCLUDED IN PAID VERSION...

Triangles Used in Bridge Design and Construction

(H. Kennedy, 2022)

Hello and welcome to this brief lecture on how and why triangles are used in bridge design and construction. According to Brockley, the purpose of a bridge is both technical and social, which includes financial and aesthetic reasons. Today's bridges not only transport goods and people safely, but they are also a platform for a symbolic or iconic feat of engineering.


THE FULL TRANSCRIPT IS INCLUDED IN THE PAID VERSION...

Appendix: PowerPoint Slides

Listen to the lecture and take notes using the PPT slides

