

Laboratory Report Writing

EXAMPLE

Copyright: These materials are photocopiable but we would appreciate it if all logos and web addresses were left on materials. Thank you.

Teacher's Notes EXAMPLE

<u>Aim</u>: This lesson is designed to help students understand the essential components of a lab report, with a focus on the main sections: abstract, introduction, methodology, results, discussion, and conclusion.

Time: 90-120 minutes.

<u>Delivery:</u> This lesson can be delivered face-to-face or online. For online delivery, each worksheet could be placed in a class document on OneDrive.

Lead in

- Students discuss the five questions with their partner(s).
- Whole class feedback: Take students' ideas but do not give away too much at this stage.

Task 1

- Students match the components of a lab report with the corresponding definitions.
- Feedback: Students compare with a partner or a small group before being nominated to give answers to the whole class.
- Display ANSWERS.

Tasks 2-14

- There are a good variety of tasks to keep the students engaged and the exercises are organised in the following way:
 - 1. Students consider what they already know through completing a task.
 - 2. Students read a section of a research report and complete a task.
 - 3. Students summarise what they have learned.
- After each task, students should be given time to compare with a partner or a small group before being nominated to give answers to the whole class.
- ANSWERS can be displayed after each task.

Tasks 15-17

- These last tasks are related to the language of lab reports. Students read through the complete lab report and firstly, identify the tenses, modals and relative clauses; secondly, identify and analyse the non-integral in-text citations; and thirdly, select useful fixed phrases.
- After each task, students should be given time to compare with a partner or a small group before being asked to give their answers for the whole class.
- ANSWERS can be displayed after each task.

Task 18: Extension (not included in timing)

Differentiation Options

- Students work in pairs to complete the report.
- Students write one section only and receive teacher feedback before writing the next section.
- Decrease the word limit to 800-1000 words.
- Provide a structured template with section headings and guiding prompts (Appendix Two).

^{*} ANSWERS are at the end of the worksheets.

Lab Report Writing

Lead in

Discuss these questions with your partner(s).

- 1. Have you ever written a scientific or lab-based report before? If so, what was it about?
- 2. What
- 3. From your perspective, what makes a lab report clear, useful, and well-structured?
- 4. What are the typical report?
- 5. Can you suggest a topic you have studied that could be explored through an experiment or

Task 1

Most lab reports share common components. Match the following components with the corresponding definitions and then compare with your partner(s).

	Component		Definition
1.	Title Page	a.	This section in your work in a format that has been decided by the school.
2.	Abstract	b.	This tells can locate specific sections.
3.	000000000000000000000000000000000000000	C.	This describes your findings using text and visuals.
4.	Introduction	d.	This is a findings.
5.	000000000000000000000000000000000000000	e.	This provides the background to your research, the aims the topic.
6.	Results	f.	This summarises your report and offers suggestions or findings.
7.	Discussion	g.	This is a short summary of the context, methods, findings report.
8.	0000000000000	h.	This discusses how you collected your data.
9.	Reference List	i.	This that you have not included in the main report.
10.	10000000000000	j.	This should
1.	2. 3. 4.		5. 6. 7. 8. 9. 10.

Tip: Always check with your teachers which components you need to include before you start your experiment.

Important Information

The following tasks will help you to understand the main components of a lab report by thinking about your existing knowledge and analysing a student's report. Before you start the tasks, look at the following extract of the student's task brief:

Student's Task Brief

- Write a 1200-word lab report on: 'Investigating Heat Conduction in Different Materials'
- Include the following components: abstract, introduction, methodology, results, discussion and conclusion.
- You are expected experiment.
- You need to include a reference list using the Harvard Referencing System.
- You do NOT need appendices.

<u>Abstract</u>

Task 2

What do you think are the key features of an abstract of a lab report? Complete the gaps in the following sentences with words from the box below.

	XXXXXXXXX	implications	XXXXXXXXXXX	findings	concept	00000000
1.	It should begin wi	th a clear stateme	ent of the stu	dy's	•	
2.	The	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		must be bri	efly describ	ed.
3.	Thes	hould be summar	rised,	00X XXXXXXXX	000000000	
4.	Key r	nust be presented	d without det	ailed statis	tics.	
5.	Results should	000000000000000000000000000000000000000	00000000	t	eing studie	d.
6.	It needs to end wi	th a brief comme	nt on the stu	dy's	XXX XXXXXX	D000000000

Task 3

Read and analyse the abstract of a student's lab report and complete the following exercises.

Investigating Heat Conduction in Different Materials						
This experiment investigates the rate of	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX					
. ¹ A uniform	heat source was applied to one end of each metal					
rod, and the temperature change .2 The results						
confirmed that copper has the highest therma	I conductivity, followed by aluminium,					
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	.3 The findings reinforce theoretical predictions					
and have practical implications for material sel	ection in .4					

Identify the function of each sentence by selecting the appropriate option from the box. Compare with a partner(s) when you have finished.

	To explain the	To relate the findings to real-world applications	To summarise the results	purpose
1.				
2.				
3.				
4.				

Now answer these questions.

1.	Is the abstract written clearly and concisely?	Yes	No
2.	Can you understand the whole report from the abstract?	Yes	No

Reflection

What have you learned about the abstract of a lab report? Put your ideas in the box and be prepared to share with the class.

Introduction

Task 4

What do you think are some of the key features of an introduction to a lab report? Decide from the following options. Compare with your partner(s) when you have finished.

	Features	Yes	No
1.	To introduce the topic and context.		
2.	То		
3.	To review the relevant literature.		
4.	То		
5.	To identify a gap or problem.		
6.	To state		
7.	To state the hypothesis.	_	
8.	To provide experience.		

Task 5

Read the introduction of the student's lab report and reorder the sentences so that they are logical. Add your answers to the table below and then compare with your partner(s) when you have finished.

<u>Introduction</u>
It is hypothesised that copper will exhibit
aluminium, while stainless steel and glass will show significantly lower rates. 1 This investigation
materials under identical conditions, providing empirical
support for the theoretical hierarchy of thermal the
alongside convection and radiation. ³ Understanding
thermal conductivity is essential in numerous and
electronic creating efficient energy systems. ⁴ Metals such as
copper and aluminium are commonly used where high as
heat resistance is beneficial (Davis, 2000). ⁵ This is a
property that varies significantly between metals,
2015). ⁶ It between adjacent particles within a material
(Incropera et al., 2007). The rate at which heat flows through
thermal conductivity. ⁸
Reordered Sentences
1.
2.
3.
4.
5.
6.
7.
8.
Reflection
What have you learned about the introduction of a lab report? Put your ideas in the box and be
prepared to share with the class.
p. op.s. od to cs. o t./e diddd.

Methodology

Task 6

What are some of the key features of the methodology section of a lab report? Match column A and column B to make full sentences.

	Colur	nn A					Colu	mn B		
1.	It identifies the typ	e of study	()()	A.	including thermocouples, a Bunsen burner, stopwatch, and clamp stands.					er, a
2.	It explains the mate	erials used	d	B.	such as glass rods.					and
3.	It se	et- up usec	t k	C.	including temperature readings every 30 seconds for 5 minutes.					
4.	It outlines the step-by-step procedure				using metal rods.				ent	
5.	It states how variab	oles were		E.	E. including how temperature was				s recorde	d at a
6.	5. It explains how data was collected				such a	s using ro	ds of eq	ual len	gth and he	eating
1.	2.		3.		4.		5.		6.	

Task 7

Read and analyse the methods section of a student's lab report and complete the following exercises.

Methodology
Materials
, made from different
materials: copper, aluminium, stainless steel, and glass. To ensure uniform heating, a Bunsen
burner was used as the heat source. ²
, a ruler, clamp stands, a heat-proof mat, and heat-resistant
gloves. ³ A data logger was also available to across
.4
Procedure
Each rod on a heat-proof mat,
with one end exposed to the flame of a Bunsen burner. ⁵ A thermocouple was attached 15 cm from
the heated end of the rod to record angle
to maintain uniform heat input. ⁷ Once heating began,
temperature readings were taken at 30-second
was allowed to return to room temperature before the next
material was tested under the same conditions. ⁹
Control Variables
To ensure fair : the rods were
identical in length and diameter; the temperature was measured at the same distance from the
and duration of heating were standardised. ¹⁰ The room
temperature was monitored and maintained .11

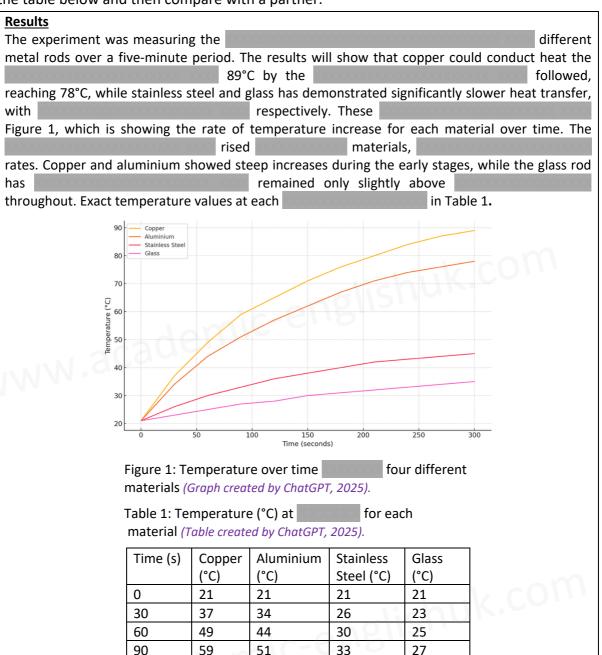
Can you identify any of the key features from task 6 in the student's report? Complete the table with your partner.

	Feature	Yes	No	Sentence Number(s)
1	The type of			
	(e.g., field study, comparative design).			
2	The (e.g.,			
	what was measured, what was compared).			
3	The materials and equipment are clearly listed.			
4	The set up is repeated.			
5	The measurement tools and frequency are described.			
6	Conditions were			
	comparison.			
7	The methods used for data collection are appropriate to the aim.			
8.	Limitations of the methods are acknowledged.			

	- 61	ectio	
ĸ	ΔΤΙ	ACTIO	r
		CLIU	

What have you learned about the methods section of	of a lab report? Put your ideas in the box	and be
prepared to share with the class.		

Results


Task 8

What are some of the key features of the results section? Rejumble the following sentences with your partner(s) to find out.

1.	bias or any/ as they are.
2.	research questions or objectives/ structure order.
3.	research highlight the key results/ to the/ succinctly.
4.	ensure they are labelled/ if using tables or/ to illustrate your
	data.
5.	relevant redundant descriptions/ only focus on.
6.	in this section/ do not explain why/ only it means.

Find the ten errors the student has made with verb forms in their results section. Complete the table below and then compare with a partner.

	Language Errors	Correction
1.		
2.		

www.academic-englishuk.com

3.	
4.	
5.	
6.	
7.	
8.	
9.	
10.	

Reflection

What have you learned about the results section of a lab report? Put your ideas in	າ the box a	and be
prepared to share with the class.		

Discussion

Task 10

What are some of the key features of the discussion section of a lab report? Read the following paragraph and complete the gaps with words from the box below.

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	findings	literature	xxxxxxxxx aim
The Discussion section be	gins by	X XXXXXX	in relation to the
XXXXXXX XXXXXXXX XXXXXX	It provides an	c	of the results, linking them to
previous an	nd psychological theory. T	Γhe	study's
000000000000000000000000000000000000000	directions for	_ research.	

Task 11

Read and analyse the discussion section of the student's lab report and complete the following exercise.

Discussion
The results strongly support the hypothesis, with copper
reaching five minutes, which aligns with its high
thermal conductivity of 385 W/m·K (Callister and Rethwisch,
reaching conductivity of around 205 W/m·K and
explains its widespread use in aerospace and cookware, due to
(Ashby and Jones, 2012). ² In contrast, stainless steel and glass
demonstrated much lower heat conduction,
conductivities of approximately 16 W/m·K and 1 W/m·K
(Davis, 2000). ³
Such results and highlight the suitability of glass
and stainless steel in contexts where insulation or heat resistance
distinct and non-metals in this experiment
illustrates the key role atomic structure plays in thermal
Despite findings, minor variations in thermocouple calibration and
heat loss to the surrounding environment
Surface oxidation aluminium, may also have influenced heat transfer efficiency (Tritt, 2017).

		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•	
www aca	demic-	englis	huk	com

incorporating better insulation, using multiple				
measurement points, or conducting repeated trials				
remain and reinforce the practical importance of				
material choice in engineering design (Incropera et al., 2007). ⁹				
measurement points, or conducting repeated trials remain and reinforce the practical importance of material choice in engineering design (Incropera et al., 2007).9 rapid heat dissipation, such as electronics and radiators, while materials like glass and stainless steel protective thus provides both empirical support and				
radiators, while materials like glass and stainless steel or				
measurement points, or conducting repeated trials remain and reinforce the practical importance of material choice in engineering design (Incropera et al., 2007).9 rapid heat dissipation, such as electronics and radiators, while materials like glass and stainless steel or				
11 March 1 Mar				

Match each sentence with its corresponding function and then compare with your partner(s) when you have finished.

Sentence Number			Sentence Function																
1	ā	E	Тор	o present contrasting data for two other materials.															
2	k	C	To ic	o identify a limitation related to data collection accuracy.															
3	(To ir	nterp	ret t	he	XX	XXX	XXX	XX	XXX	XX	XXX	XXX	W a	applic	atio	ns.	
4	(t	To s	o suggest improvements for future experimental design.															
5	6	9	To c	onclu	ıde t	he	XX	XXX	XXX	XX	XXX	OX.	XXX	XX	XX)	XXX	to	wide	r
			scier	ntific	und	ersta	ndin	g.											
6	1	f	To li	nk th	ie 📗	XX	XXX	XX	XXX	XX	XXX	XXX	XXX	XX	XX	mat	eria	l	
			sele	ction															
7	8	9	To s	umm	arise	the	key	resul	t and	d con	nec	ts it t	o the	e hyp	othe	esis.			
8	ŀ	ſ	To re	einfo	rce t	hat t	he fi	ndin	gs ar	e cor	nsist	ent v	vith (estak	olishe	ed sci	enti	fic	
			theo	ry.															
9	i	j	To n	ote a	a XX	XXX	СХХ	XXX	XX	XXX	XX	XXX	XX	XXX	ΟXΧ	relial	oility	/.	
10	j	j	To e	xplai	n the	unc	lerly	ing so	cient	ific p	rinc	iple k	ehir	nd th	e ob	serve	d re	sults.	
11	ŀ	`	To c	o compare a its relevance															
			in re	al-w	orld	appli	catio	ns.											
1. 2	2.	3.		4.		5.		6.		7.		8.		9.		10.		11.	Ī

Reflection

What have you learned about the discussion	section of a lab	report? Put your	ideas in the bo	x and
he prepared to share with the class				

Conclusion

Task 12

What are the key features of the conclusion of a lab report? Decide if the following sentences are true or false and then compare with your partner(s) when you have finished.

	Key Features	True	False
1.	This should be a short section with no new information.		
2.	It discusses		
3.	It analyses the limitations in the methods used.		
4.	It summarises		
5.	It offers recommendations based on the findings.		
6.	It is written		

Use the key information provided to write the conclusion to the same student's lab report with your partner in the box provided below.

1.	State that the aim was to investigate heat conduction in different materials.					
2.	Report that	efficiently.				
3.	Note that stainless steel and glass were less	conductive, with lower final temperatures.				
4.	Highlight that the results	values.				
5.	Comment that atomic or molecular structure influences conductivity.					
6.	Mention for fair comparison.					
7.	State that surface oxidation or air movemen	t may have affected precision slightly.				
8.	Emphasise that	applications.				
	nclusion					
	Task 14					
	it are the similarities and differences betw clusion?	cen your constant and the statemes				
	Similarities	Differences				
Wha	Reflection What have you learned about the conclusion of a lab report? Put your ideas in the box and be prepared to share with the class.					

Read through the student's complete lab report. Highlight examples of the tenses, modals and relative clauses that the student used in the colours and features suggested below and analyse the reason the student used this language. Compare with your partner(s) when you have finished.

Investigating Heat Conduction in Different Materials

Abstract

This experiment investigates the rate of heat conduction in four different materials: copper, aluminium, stainless steel, and glass. A uniform heat source was applied to one end of each metal rod, and the temperature change was measured at regular intervals along its length. The results confirmed that copper has the highest thermal conductivity....

WHOLE TEXT REPORT INCLUDED IN PAID VERSION....

Language	Example	Reason for Use
Present simple		
active		· -om
Present simple		bilk Com
passive		lisliuis
Past simple	:	
active	Jamil	
Past simple	-cage	
passive		
Future simple		
Modal verbs		
active		
Defining		
relative clause		
Non-defining		
relative clause		

Task 16

Read through the student's complete lab report again and identify the in-text citations and add them to column one of the table. Complete the other three columns with the requested information and then compare with your partner(s) when you have finished.

	Non-integral citations	Information Included	Meaning of 'et al'	Reason for use
1.				
2.				
3.				
4.				

www.acad	lemic-engl	ishu	k.com

5.		

Read through the student's complete lab report again. What fixed phrases could you use in your research report? Complete the table with the following information.

	Fixed Phrase	Section
1.	This experiment investigates + noun phrase	Abstract
2.		
3.		
4.		
5.		
6.		
7.		
8.		
9.		
10.		
11.		
12.		

Extension

Task 18

You are now ready to write your own lab report using primary data. Read through the following information carefully and ask your teacher when your deadline is and where you should submit your report.

Student's Task Brief

•	Write a 1200-word lak	report on the following: 'Investigating	000000000000000000000000000000000000000
	vs.	Aluminium'	

• Include the following features: abstract, introduction, methods, results, discussion and conclusion.

•	You are expected	experiment.

- You need to include a reference list using Harvard Referencing System.
- You do NOT appendices.
- See Appendix One for the students' pack.

Lab Report Writing ANSWERS

Task 1

	Component		Definition											
1.	Title Page	a.	This section displays all the sources you have used in your work					ork						
			in a format that has been decided by the school.											
2.	Abstract	b.	. This tells your readers exactly where they can locate specific					;						
			sections.											
1.	<i>i</i> 2. <i>q</i> 3. 4.		5.		6.		7.		8.		9.		10.	

<u>Abstract</u>

Task 2

	methods implications samples results materials aim	
1.	It should begin with a clear statement of the study's <u>aim.</u>	
2.	The type, number and properties of the tested <u>samples</u> must be briefly described.	
3.	The <u>methods</u> should be summarised, including	

ALL ANSWERS INCLUDED IN PAID VERSION...

Appendix 1: Student's Project Pack

Heat Conduction in Recycled vs. Pure Aluminium

Project Overview

This project focuses on designing and conducting an experiment to compare the thermal conductivity of recycled aluminium and pure aluminium. Students will plan, carry out, and report on their own investigation, using scientific methodology and academic conventions.

Research Aim	
To determine	aluminium conducts aluminium.
Research Quest	on a lower rate of heat conduction aluminium?
•	uminium samples () for testing using standard procedures.

FULL APPENDIX INCLUDED IN PAID VERSION...

Appendix 2: Lab Report Template

Heat Conduction in Recycled vs. Pure Aluminium

Title: Investigating Heat Conduction in Recycled vs. Pure Aluminium

1. Aim
What is the purpose of your investigation?

2. Hypothesis
What do you predict will happen?

3. Materials
List all the materials and equipment you used.

FULL APPENDIX INCLUDED IN PAID VERSION...